Weighted Trudinger-Moser inequalities in the subcritical Sobolev spaces and their applications

Megumi Sano (Hiroshima University)*

Let $1 be open ball in <math>\mathbb{R}^N$ with center 0, with radius $R \in (0, \infty)$ and ω_N be the surface area of unit sphere \mathbb{S}^{N-1} in \mathbb{R}^N . For unified notation, we set $B_{\infty}^N = \mathbb{R}^N$. The boundedness, optimality and the existence of a maximizer of the following type maximization problems T_p, T_p^{rad} have been studied so far.

$$T_{p} := \sup\left\{ \int_{B_{R}^{N}} f(u)V(|x|) \, dx \, \middle| \, u \in \dot{W}_{0}^{1,p}(B_{R}^{N}), \, \|\nabla u\|_{p} \le 1 \right\}$$
$$\geq \sup\left\{ \int_{B_{R}^{N}} f(u)V(|x|) \, dx \, \middle| \, u \in \dot{W}_{0,\text{rad}}^{1,p}(B_{R}^{N}), \, \|\nabla u\|_{p} \le 1 \right\} =: T_{p}^{\text{rad}}$$

First, we show the following figures to explain known results about the boundedness and our motivations.

f(u)	V(x)	Name of ineq.	Supplement		
$ u ^p$	$ x ^{-p}$	Hardy			
$ u ^q (p < q < p^*)$	$ x ^{-A_q}$	Hardy-Sobolev	$A_q := \frac{p^* - q}{p^* - p} p > 0$		
$ u ^{p^*}$	1	Sobolev	$p^* := \frac{Np}{N-p}$		
$\boxed{ u ^q \left(p^* < q < \infty\right)}$	$ x ^{B_q}$	(Hénon or Ni)	$B_q := \frac{q-p^*}{p^*-p}p > 0$		

Table 1: Boundedness of T_p^{rad} ($p < N, R \in (0, \infty]$)

Table 2: Boundedness of T_N and T_N^{rad} ($R \in (0, \infty)$)

f(u)	V(x)	Name of ineq.	Supplement
$ u ^N$	$ x ^{-N} \left(\log \frac{aR}{ x }\right)^{-N}$	Critical Hardy	$a \ge 1$
$ u ^q (N < q < \infty)$	$ x ^{-N} \left(\log \frac{aR}{ x }\right)^{-\beta_q}$	(Generalized C.H.)	$\beta_q := \frac{N-1}{N}q + 1$
$\exp(\gamma_{\beta} u ^{N'})$	$ x ^{-\beta} (\beta \in (0,N))$	Singular TM.	$\gamma_{\beta} := \alpha_N (1 - \beta/N)$
$\exp(\alpha_N u ^{N'})$	1	Trudinger-Moser	$\alpha_N \coloneqq N \omega_N^{\frac{1}{N-1}}$

In this talk, we consider the boundedness, optimality and the attainability of T_p^{rad} with the exponential growth $f(u) = \exp(\alpha |u|^{p'})$ beyond the polynomial growth $|u|^q$ in the subcritical case p < N, see Table 1. This is an analogue of the critical case p = N, see Table 2. More precisely, we give a suitable weight function $V_p(|x|)$ which is more rapidly vanishing at 0 than the Hénon weight function $|x|^{B_q}$. Furthermore, our inequality converges to the original Trudinger-Moser inequality as $p \nearrow N$ including the optimal exponent α_N and the concentration limit $1 + e^{1 + \frac{1}{2} + \cdots + \frac{1}{N-1}}$. If time permits, we also give applications of our inequality to the elliptic and the parabolic equations with exponential nonlinearity.

This is a joint work with Masahiro Ikeda (Keio University / RIKEN) and Koichi Taniguchi (Shizuoka University).

^{*}e-mail: smegumi@hiroshima-u.ac.jp