学術論文

  1. N. Kikuchi, M. Misawa: Campanato type estimates for solutions of difference-elliptic partial differential equations with constant coefficients, Rend. Circ. Mat. Palermo (2), 39 (1990), pp. 99-131.
  2. M. Misawa: ``A Harnack inequality for solutions of difference differential equations of elliptic-parabolic type'', Math. Z., 213 (1993), pp. 393-424.
  3. M. Misawa: Existence and regularity results for the gradient flow for $p-$harmonic maps, Electron. J. Differential Equations, 1998, 36, (1998), pp. 1-17.
  4. M. Misawa: Existence and partial regularity results for the gradient flow for a variational functional of degenerate type, Rend. Mat. Appl. (7), 19 (1999), pp. 317-351.
  5. M. Misawa: Approximation of $p-$harmonic maps by the penalized equation, Nonlinear Anal. 47 (2001), pp. 1069-1080.
  6. M. Misawa: On the $p-$harmonic flow into spheres in the singular case, Nonlinear Anal. 50 (2002), pp. 485-494.
  7. M. Misawa: Local H\"older regularity of gradients for evolutional $p-$Laplacian systems, Annali di Matematica 181 (2002), pp. 389-405.
  8. M. Misawa: Partial regularity results for evolutional $p-$Laplacian systems with natural growth, manuscripta mathematica 109 (2002), pp. 419-454.
  9. M. Misawa: Existence of a classical solution for linear parabolic systems of nondivergence form, Commentationes Mathematicae Universitatis Carolinae 45, 3 (2004), pp. 483-490.
  10. M. Misawa: Existence for a Cauchy-Dirichlet problem for evolutional $p-$Laplacian systems, Applicationes Mathematicae, 31 (2004), pp. 287-302.
  11. M. Misawa: $L^q$ estimates of gradients for evolutional $p-$Laplacian systems, J. Differential Equations 219 (2005), pp. 390--420.
  12. M. Misawa: The evolution of minimal surfaces with free boundaries in higher dimensions, Gakuto International Series, Mathematical Sciences and Applications, Vol.22 (2005), pp. 155-171.
  13. M. Misawa: Existence of a strong solution and $L^q-$estimate for linear parabolic systems of nondivergence form, Electronic Journal of Differential Equations, (2006), to appear.