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Abstract. We obtain new evaluations of special values of multiple polylog-
arithms by using a limiting case of a basic hypergeometric identity of G. E.
Andrews.

1 Introduction

The objects of the present research are two types of multiple polylogarithms (MPLs
for short):
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where 1<n € Z; 1<k; € Z (i =1,...,n — 1), 2<k, € Z; z € C such that |z|<1.
Our main interest in the present paper is the cases z = £1. For z = 1, the multiple
series (1) and (2) become the multiple zeta value (({k;}7_,) (MZV for short) and
the multiple zeta-star value ¢*({k;}7,) (MZSV for short), respectively, where
{ki}?_ :=k1,...,ky, (see Euler [9], Hoffman [11], and Zagier [22]). We denote by
C—({ki},) and ¢* ({k;}7,) the case z = —1 of (1) and of (2), respectively. Since
the 1990s, MPLs have attracted much interest from many researchers because
of their surprising properties. One is that their special values satisfy numerous
relations (see, e.g., [4], [7], [8], [10]). This property is particularly striking for MZV
and MZSV. In the present paper, we also study this property. Our main tool for
the study is a hypergeometric identity. The generalized hypergeometric series is
defined by the power series
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where 1<p € Z; z, ai1,...,ap41 € C; by,...,b, € C\ {0,—-1,-2,...}; (a),, de-
notes the Pochhammer symbol, i.e., (a), =ala+1)---(a+m —1) (1<m € Z)
and (a)p = 1. This series converges absolutely for all z € C such that |z] = 1
provided Re (3°7_, b — P 1 a;) > 0. In [13] and [14], we applied the following

hypergeometric identity of G. E. Andrews to studying special values of MPLs:

Theorem A (Krattenthaler and Rivoal [17, Proposition 1 (i)], a limiting case
of Andrews’ identity [1, Theorem 4]). Let s be a positive integer and a, b;, ¢;
(t=1,...,84+ 1) complex numbers. Suppose that the complex numbers a, b;, c;
(¢t =1,...,584 1) satisfy the conditions 1 +a —b;, 1 +a —¢; ¢ {0,—-1,-2,...}
(i=1,...,s4+1),

s+1
Re ((28 +1)(a+1)— QZ(bi + ci)> > 0,

i=1

s+1
Re(ZAi(quabici)) >0 (r=2,...,541)

1=r

for all possible choices of A; =1 o0r2 (i=2,...,s), Asy1 = 1. (For details of the
choices of A;, see [17].) Then
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As aresult, we obtained various new and interesting relations among the special
values, e.g., the identities (29), (30), (28), (58) of [14]; see also [13, (A3), (A4), and
Addendum)]. (The identities (28) and (58) of [14] were discovered in 2014.) The
results of [14] show that Theorem A is very useful for this kind of research. In the
present paper, we again deal with the application of Theorem A, and obtain new
evaluations of special values of MPLs; see Theorems 1, 2, and 3 below. Here we
note that Krattenthaler and Rivoal [17] applied Theorem A to proving an identity
between hypergeometric series and multiple integrals related to construction of
Q-linear forms in the Riemann zeta values ((k) = > o_, m~*, which is Zudilin’s
identity [24, Theorem 5]. Their prior work is on an application of Andrews’ identity
to diophantine approximation of zeta values. Our research on the application to
special values of MPLs was begun in 2009. The papers [1] and [17] gave us a
motivation of [13], [14], and of the present research. See also [12, Remarks 2.6 and
2.7] and page 2 of arXiv:0908.2536v1. We obtained Applications 1 and 2 below
in April-July 2013 and June 2014, respectively. For other notes related to the
present research, see [15, Introduction, Notes 1 and 2], which is a preprint of the
present paper.
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2 Applications of Andrews’ hypergeometric iden-
tity
Hereafter we use the following notation:
Zsp = f{kk+1,k+2,..}, Zep:={kk—1k—2..1},
{a}" :=a,...,aq,
—

where k € Z and 1<n € Z. We regard {a}" as the empty set (.

2.1 Application 1
Using Theorem A, we prove the following evaluations:

Theorem 1. Let r € Z>g and s € Z>1. Then the sums

;(_W_i { (s ) 3 " Z) + (S B 11 " Z) } {1y, 25 +14), 3)
g(—1)ri2m+1 {<25 +; - 1) B (25;r_i1 1>}C_({1}M725+i) )

can be expressed in Q-polynomials of the Riemann zeta values ((k) = > °_ m™*

(k € Z>2).

Remark 1. We first note the following two evaluations:

(log 2)™+2
(m+2)!

(log 2)m+2—k

(m+2—k)!

({13, 2) =(=1)"¢(m + 2) + (-1)"2

m—+2

+ (=)™ Y Lig(1/2)
k=0

(5)

(m € Z>o; Borwein, Bradley, and Broadhurst [6, Identity (69), Section 6]), where
Lig(2) :==>_07_, 2™m~* is the polylogarithm; and

1

12
7 1 ,
- 14(3) log 2 + 5((2)(1%2)

C-(1,3) = = 2Lia(1/2) - 5 (log2)* + 2¢(4)

(6)

(Borwein, Borwein, and Girgensohn [5, p. 291, line 10]). We note that, while
the evaluations (5) and (6) contain Lix(1/2) (k € Z>1, log2 = Li;(1/2)), the
evaluations of the sums (3) and (4) in Theorem 1 do not contain Lig(1/2). In
fact, they can be evaluated only by ((k) (= Lix(1)). From this fact, we think
that the sums (3) and (4) are particularly interesting. Each of (_({1}™,n +1)’s
(m,n € Z>¢) can be evaluated by alternating Euler sums (see Borwein et al. [6,
Identity (28)] and [7, Theorem 9.3]). For MZVs, it is known that ({1}, n + 2)
(m,n € Z>q) can be expressed in a Q-polynomial of ¢(k) (see [20] and [22]).
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To prove Theorem 1, we need two lemmas. The first gives expressions of (3)
and (4) as sums of MZSVs:

Lemma 1. We have
(4)

S { (T (7T ) et

=0

= > Cn+2hn)
riteArs=r
Ti€L>0

(7)

forallr € Z>q, s € Z>1.

(i)
i(q)“@*i“ {<25 +; - 1) B (25i+_¢1 1) } 1y 25+ )

-3 i (reets)

< TL(rs + 1) § ¢ (hrs +2¥5)

ri+-+rs=r—i | j=1
Ti€L>0

a=1 (8)

for allr € Z>o, s € Z>1, where I'(z) is the gamma function and (2Sj_i1_1) =0 if
1=0.

Proof. Taking o = 8 =1 in [14, Theorem 2.13 (iii)], we have (7). The proof
of (8) is as follows: Taking a =2a and b; =c¢; =a (i=1,...,s+1) (s € Z>1,
a € C with s +1/2 > Re(a) > 1/2) in Theorem A, we have

)30 2 D (1"
— m! (m+ a)2st+l

~ T()? - 1
CI'(2a—1) Z H (m; + a)?’

0<m;<---<ms<oo t=1

Differentiating both sides of this identity r times at & = 1 and using the identities

1 d o1
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0<m<---<mpr<mi=1

T
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0<m<---<my<m 0<mi<---<mp=m /) =1

(r,m € Z>p), we obtain (8).

The second lemma gives evaluations of the sums of MZSVs in Lemma 1 in
terms of ((k):
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Lemma 2. Letk € Z>1, q,7 € Z>0, S € Z>2, and let f(r1,...,7) be a symmetric
function with k variables. Then the sum
Z flr,... )¢ (gr1 + 8, .., qrk + 5) (9)
R
Ti€ZL>0
can be expressed in a Q-linear combination of f(rh...,rk){l_[f:l ¢tmy)} (m; €
ZZQ)'

Proof. Let & be the symmetric group of degree k. Then we have

Z Z f(ra@ys -3 Tom) ) (@Te@) + 55+ @) + 5)

0€SK To(1) T+ o (k) =T
To(i)€EL>0

= ) FOro k) > C(@re@y + 5, qTo +5)
it A TE=T ocEG
ri€ZL>0

fork € Z>1, q,r € Z>0, s € Z>2. We examine each side of (10). Taking i; = gr;+s
(j=1,---,k) in [11, Theorem 2.1], we see that the inner sum on the right-hand
side of (10) can be written as a Q-polynomial of {(m) (m € Z>2). Thus the right-
hand side becomes a Q-linear combination of f(rqy,..., rk){Hle ¢(m;)}. On the
other hand, since |&y| = k!, where |Sy| denotes the number of elements of Sy,
the left-hand side of (10) can be rewritten as

k! Z flry, o) (gri+ 8, ., qrg + 8),

Pyt trg=r
Ti€ZL>0

which is (9). This completes the proof.

Remark 2. Hoffman proved his evaluation [11, Theorem 2.1] explicitly; therefore
the sum (9) can also be evaluated like that.

Proof of Theorem 1. The case ¢ = 1, s = 2, f(r1,...,7%) = 1 of Lemma 2
shows that the right-hand side of (7) can be expressed in a Q-linear combination
of Hle ¢(m;), and this gives a proof of the assertion for (3). Similarly, the case
qg=1 =2 f(ri,...,7) = Hle(n- + 1) of Lemma 2 shows that the inner
sum on the right-hand side of (8) can be expressed in a Q-linear combination of
{Hle(r,- + 1)}{Hf:1 ¢(m;)}. As regards the differential coefficient

i (Fn 3

it also has such an expression. Indeed, using the expansion of the gamma function

I'(a) = exp (—7(a -1)+ Z(—l)”@(a — 1)">

(i € Zx), (11)

a=1
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for all @ € C such that |a— 1] < 1, where v is Euler’s constant (see, e.g., [3, p. 38],
[21, Chapter XII], and [20]), we have

r(gle) - <Z<—1)”+1Ef)(2” —2)(a— 1)n>

n=2

for | — 1| < 1/2, and this gives an expression of (11) by a Q-polynomial of {(k).
Therefore, combining all the above expressions of the right-hand side of (8), we
obtain a proof of the assertion for (4).

Using Theorem A, we can prove also the following evaluation, which is similar
to (7):

Theorem 2. We have

i{(s_?+i>+<8_;+i>}@({1}ri,2s+z‘)

=0

= Y (mHDC{ri+2kn)
ritetrs=r
ri€ZLx>o

(12)

forallr € Z>q, s € Z>1.

Proof. Taking a = a+1, by =g =1, b =a,¢,=10G=2,...,5s+1)
(s € Z>1, a € C with Re(a) > 0) in Theorem A, we have

o0

m! 2m +a +1
2 (@)1 (m+a)*(m+1)

S(=0™

m=0

1 > 1
= Z (m1 +a>2 {H (mz-|-a)(ml—|—1)}

0<m < <mg<oo =2

Differentiating both sides of this identity r times at « = 1 and using the identity

(_rll)r d(i;’“ ((w)l ) - @ 2 H mi:—w

w
m+1 (@)1 0<m < <m,<mi=1

(r,m € Z>p), we obtain (12).

Remark 3. (i) Taking « = 8 = v =1 in [14, Theorem 2.13 (ii)], we have another
expression of the left-hand side of (12):

The left-hand side of (12) = > ¢*({{1}",2}i))

ritetrs=r
T‘iGZZO

(r € Z>o, s € Z>1), where {{1}",2}7_, = {1}™,2,... {1}",2,..., {1}, 2.
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(ii) For s = 1, the identities (7) and (12) become

T

D=0 G0 + DG ({124 40) = ((r +2), (13)
=0
D (G0 + DT 24+14) = (r+ 1)¢(r +2) (14)
=0

(r € Z>g), respectively, where §;; denotes Kronecker’s delta, i.e., §;; = 1if i = j
and ¢;; = 0 if i#j. We note that there is a similarity between (13), (14) and the
identity for MZSVs of Aoki and Ohno [2, Corollary 1].

2.2 Application 2

As shown in [14], the following identity can be derived from Theorem A:
k

Do Y ik +2, {42}
=0 k1+k‘;~€HZcSij:7z (15)
E+s—1 ko5
:21+k< Z )(1 — 2R (K + 25)

forall k € Z>o, s € Z>;1. (For details, see [14, Theorem 2.16 and its proof, Remark
8].) Using this identity, we can prove the following evaluation of MZSVs:

Theorem 3. We have
¢*(4, {2}

=c(s)¢" ({2} -

Wl N

S @+ )C{2H 3 20,8, {21 (16)

ki+katkz=s—2
kj EZzo

for all s € Z>1, where §;; denotes Kronecker’s delta defined under (14) and

25(s+1) | 2% (2(s+1) By(s41-iyBai (1 —2'72%)
=3 T3 17
C(S) 3 + 3 lz:; 21 B2(8+1) (1 — 21—2(8-‘1-1)) ( )

(s € Z>1). Here B, is the n-th Bernoulli number.

Remark 4. The identity (16) is an expression of (*(4,{2}*71) in terms of the
{2, 3}-basis of the Q-vector space of MZSVs. For the {2, 3}-basis, see [16, Section
3.

Proof of Theorem 3. To prove (16), we use the case k = 2 of (15):
3C"(4, {2171 + 2% ) ¢r({2) 4. {210
i=1
2 >0 @2+ )CT ({213 {215, {23 (18)

ki+ko+kz=s—2
kj EZZO

=225(s 4+ 1)(1 —271725)¢(2 + 25)
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(s € Z>1). By using the identity
2(1 - 2'72)¢(2s) = ¢*({2}") (19)
(s € Z>1; see [23]), the right-hand side of (18) can be rewritten as
Zs(s + 1)(1—27172)¢(2 + 25) = 2s(s + )¢ ({2°7) (20)

for s € Z>1. As regards the first sum on the left-hand side of (18), by using (19)
and Euler’s formula

s—1 B (27T)25

it can be rewritten as

DGR 2
= ZQ (i +2)C ({2} (see the proof below)

—22 — 217207 ((2(i + 2))¢(2(s — 1 - 0))

s—1 |
_ 1-2(s—1—i Bs(it2yBas—1-4) o (27r)2(6+1)
= <§(1_2 ( ))(2(2-4_2))!(2(3_1_1.))!) (-1) —

— _ (i(l _ 2172(871*2')) (2(.32(i+2)B2(511‘) : ) (2(5 + 1))'<(2(S + 1))

2 i+ )26 —1—i)! | Baurn
(3 (A6 DY Bassn By (1220 0) ) )
= 2 2 2(2 +2) B2(s+l) (]_ — 2172(S+1))

(21)
for s € Z>1, where (0) = —1/2 and ¢*() = 1. Therefore, substituting (20) and
(21) into (18), we obtain (16). The first identity of (21) can be proved in a way
similar to used for MZVs in [3, pp. 8 and 89]. Indeed, using the harmonic product
of MZSVs (see [16] and [18]), we have

O ({2 Zc (2176127 = 0 C U2y 42, {21,
s—2
-+ 2 (12)) Zc (242,27 - Y 2y 4

I
-

i

{2}5 >,

C(t+ 25 — 4)C*(2) =CH(t+25 — 4,2) + (2,1 + 25 — 4) — ((t + 25 — 2)
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for s,t € Z>5. Further, adding up each side of all these identities, we obtain

s—1

S ity = Z C{2y L {21

=0

for s € Z>1, t € Z>2. The first identity of (21) is the case ¢ = 4 of this identity.
This completes the proof of Theorem 3.

Remark 5. (i) The identity (15) contains both (19) and the identity for {(2s+1)
of [16, Theorem 2] as special cases: k = 0 and k = 1, respectively. Compare this
with [16, Proof of Theorem 2]. These two cases give a {2,3}-basis expression of
((k) for any k € Z>2 (see [16, Theorem 2]).

(ii) Taking aw = 1 in [14, Theorem 2.16], we have the following general form of
(15):

k .
221@4 (zfr) Z i+ kr +r+2,{kj +2}0)

(3
=0 ki+---+ks=k—i
kj EZZO

_ z”: Z i1 ki ﬁ kj+r;—1 ki1 +7ip1 — 2
£ . kj ki-‘,—l
i=0 ki+--+kipo=k Jj=1

rito+ripr=r+1
k‘j EZZO,TJ- 6221

% <ki+2+8—1

b >C({kj + 7Yy kit + Kipo +rig1 + 25 — 1)
i+

forall k,» € Z>o, s € Z>;. It is interesting to find applications of this general form,

and also to obtain generalizations of (16) concerning the {2, 3}-basis expression of
MZSVs.

Remark 6. (i) This was obtained in 2018. The coefficient (17) has the following
closed form:

2
els) =2 {s(s — 1) = 1+ (1 - 217200y 1)
1 (s+D@s+1) By (22)
18 (1 — 2172(541)) By (g1
for all s € Z>1. Indeed, taking n = s + 1 in the identity on page 154, line 11 of

[19] and using By = 1, By = 1 /6, we have the following identity for the Bernoulli
numbers:

s+1
2(s+1 9
Z ( ( 9 )>BQ(5+1i)BQi(1 — 2172
i—2 ¢

(s+1)(2s+1)

={1 - (2s+1)(1 = 2'2CT)}Byoyq) — 19

B2s

for s € Z>;. Dividing both sides of this identity by Bj(s;1)(1 — 21-2(s+1)) and
substituting the result into (17), we obtain (22).
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(ii) In [14, Remark 7 (i)], we gave a new proof of Hoffman’s identity ¢({1}*,1+
2) = C({1}, k+2) (k,I € Z>¢; [11, Theorem 4.4]), which is the duality formula for
C({1}*,1+2). Our proof is based on the hypergeometric identities [1, Theorem 4]
and [17, Proposition 1 (i)]; therefore it can be regarded as a hypergeometric proof
of the duality formula. It is interesting to generalize our proof to a proof of the
duality formula for all MZVs in appropriate ways.

Corrections to [14]. (i) Page 713, line 9 from the bottom: “and a revised”
should be “and is a revised”. (ii) Page 726, line 10 from the bottom: “I remark
that” should be “I note that”. (iii) Page 726, line 8 from the bottom: “and
my observation” should be “and from my observation”. (iv) Page 755, lines 3-4:
“manuscript (2013).” should be “manuscript, submitted to a journal on March 5,
2013 and rejected on May 9, 2013.”.

Acknowledgment. I am grateful to the referee for his or her comments, which
were useful for me to improve the presentation.
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