Y. Hamana, On the central limit theorem for the multiple point range of random walk, J. Fac. Sci., Univ. Tokyo, Sect. IA, 39 (1992), 339-363.
Y. Hamana, The variance of the single point range of two dimensional recurrent random walk, Proc. Japan Acad., Ser. A, 68 (1992), 195-197.
Y. Hamana, The law of the iterated logarithm for the single point range random walk, Tokyo J. Math., 17 (1994), 171-180.
Y. Hamana, The fluctuation results for the single point range of random walks in low dimensions, Japan. J. Math., 21 (1995), 287-333.
Y. Hamana, The limit theorems for the single point range of strongly transient random walks, Osaka J. Math., 32 (1995), 869-886.
Y. Hamana, On the multiple point range of three dimensional random walks, Kobe J. Math., 12 (1995), 95-122.
Y. Hamana, The fluctuation result for the multiple point range of two dimensional recurrent random walks, Ann. Probab., 25 (1997), 568-639.
Y. Hamana, A remark on the multiple point range of two dimensional random walks, Kyushu J. Math., 52 (1998), 23-80.
Y. Hamana, An almost sure invariance principle for the range of random walks, Stoch. Proc. Appl., 78 (1998), 131-143.
Y. Hamana, Asymptotics of the moment generating function for the range of random walks, J. Theoret. Probab., 14 (2001), 189-197.
Y. Hamana and H. Kesten, A large-deviation result for the range of random walk and for the Wiener sausage, Probab. Theory Related Fields, 120 (2001), 183-208.
Y. Hamana and H. Kesten, Large deviations for the range of an integer valued random walk, Ann. Henri Poincaré, 38 (2002), 17-58.
Y. Hamana, A remark on the range of three dimensional pinned random walks, Kumamoto J. Math., 19 (2006), 83--98.
Y. Hamana, On the range of pinned random walks, Tohoku Math. J., 58 (2006),329--357.
Y. Hamana, On the expected volume of the Wiener sausage, J. Math. Soc. Japan, 62 (2010), 1113-1136.
Y. Hamana, The expected volume and surface area of the Wiener sausage in odd dimensions, Osaka J. Math., 49 (2012), 853-868.
Y. Hamana and H. Matsumoto, The probability densities of the first hitting times of Bessel processes, Journal of Math-for-Industry, 4B (2012), 91-95.
Y. Hamana and H. Matsumoto, The probability distribution of the first hitting time of Bessel processes, Trans. Amer. Math. Soc., 365 (2013), 5237-5257.
Y. Hamana and H. Matsumoto, Asymptotics of the probability distributions of the first hitting time of Bessel processes, Electron. Commun. Prabab., 19-5 (2013), 1-5
Y. Hamana, Asymptotic expansion of the expected volume of the Wiener sausage in even dimensions, Kyushu J. Math., 70 (2016), 167-196.
Y. Hamana and H. Matsumoto, Hitting times of Bessel processes, volume of Wiener sausages and zeros of Macdonald functions, J. Math. Soc. Japan, 68 (2016), 1615-1653.
Y. Hamana and H. Matsumoto, Hitting times to spheres of Brownian motions with and without drifts, Proc. Amer. Math. Soc., 144 (2016), 5385-5396.
Y. Hamana and H. Matsumoto, A formula for the expected volume of the Wiener sausage with constant drift, Forum Math., 29 (2017), 369-382.
Y. Hamana and H. Matsumoto, Precise asymptotic formulae for the first hitting times of Bessel processes, Tokyo J. Math., 41 (2018), 603-615.
Y. Hamana, H. Matsumoto and T. Shirai, On the zeros of the Macdonald functions, Opuscula Math., 39 (2019), 361-382.
Y. Hamana, Hitting times to spheres of Brownian motions with drifts starting from the origin, Proc. Japan Acad., Ser. A 95 (2019), 37--39.
Y. Hamana, The probability distributions of the first hitting times of radial Ornstein-Uhlenbeck processes, Studia Math., 251 (2020), 65-88.