学術論文
- T. Abe:
A remark on the 2-dimensional moduli spaces of vector bundles on K3 surfaces.
Math. Res. Lett. 7 (2000), no. 4, 463--470.
-
T. Abe:
Boundedness of semistable sheaves of rank four.
J. Math. Kyoto Univ. 42 (2002), no. 2, 185--205.
- T. Abe:
Anticanonical divisors of a moduli space of parabolic vector bundles of half weight
on $\mathbb{P}^{1}$.
Asian J. Math. 8 (2004), no. 3, 395-408.
- T. Abe:
The moduli stack of rank-two Gieseker bundles
with fixed determinant on a nodal curve.
Advanced Studies in Pure Mathematics 45, (2006) 117-144.
-
T. Abe:
On $SL(2)-GL(n)$ strange duality.
J. Math. Kyoto Univ. 46 (2006), no.3, 657-692.
-
T. Abe:
Compactification of the symplectic group
via generalized symplectic isomorphisms.
RIMS Kokyuroku Bessatsu B9 (2008), 1-50.
-
T. Abe:
Strange Duality for Parabolic Symplectic Bundles on a Pointed Projective Line,
Int. Math. Res. Not. IMRN 2008, Art. ID rnn121, 47 pp.
-
T. Abe:
The moduli stack of rank-two Gieseker bundles
with fixed determinant on a nodal curve II.
Internat. J. Math. 20 (2009), no. 7, 859-882.
-
T. Abe:
Degeneration of the strange duality map
for symplectic bundles,
J. reine angew. Math. 631 (2009) 181-220.
-
T. Abe:
Projective normality of the moduli space of
rank $2$ vector bundles on a generic curve.
Trans. Amer. Math. Soc. 362 (2010), 477-490.
-
T. Abe:
Deformation of rank $2$ quasi-bundles and some strange dualities for rational surfaces,
Duke Math. J. 155 (2010), no. 3, 577-620.
-
T. Abe:
Moduli of Oriented Orthogonal sheaves on a nodal curve,
Kyoto Journal of Mathematics, Vol. 53, No.1, (2013) 55-90.
-
T. Abe:
Strange duality for height zero moduli spaces of sheaves on $\mathbb{P}^{2}$,
The Michigan Mathematical Journal, Vol. 64 (2015) 569-586.
-
T. Abe:
Semistable sheaves with symmetric $c_{1}$ on a quadric surface,
The Nagoya Mathematical Journal, Vol. 227 (2017) 86-159
-
T. Abe:
A note on strange duality for holomorphic triples on a projective line,
Manuscripta Math. Vol. 159 (2019), no. 3-4, 363-377.
-
T. Abe:
Semistable sheaves with symmetric c1 on del Pezzo surfaces of degree $5$ and $6$,
Eur. J. Math. 7 (2021), no. 2, 526-556.
-
T. Abe:
Subvarieties of geometric genus zero of a very general hypersurface,
Algebr. Geom. 10 (2023), no. 1, 41-86.