固有値の定義

- 1 固有値の定義を述べよ。
- $oxed{2}$ n 次正方行列 A の固有値を $\lambda_1,\lambda_2,\ldots,\lambda_n$ とする。lpha をスカラーとするとき,行列 lpha A の固有値を求めよ。
- $oxed{3}$ n 次正方行列 A の固有値を $\lambda_1,\lambda_2,\ldots,\lambda_n$ とする。 α をスカラーとするとき,行列 $A+\alpha I_n$ の固有値を求めよ。ただし I_n は n 次単位行列を表す。
- 4 正則行列の固有値は決して0にならないことを示せ。
- $oxed{5}$ A を m 次正方行列,B を n 次正方行列とし,(m+n) 次正方行列 C を

$$C = \begin{pmatrix} A & O_{mn} \\ O_{nm} & B \end{pmatrix}$$

とおく。ここで $O_{k\ell}$ は $k \times \ell$ 次の零行列を表す。A の固有値および B の固有値は C の固有値となることを示せ。

⑥ A を正方行列とし, λ, μ を A の相異なる固有値とする。 \vec{u} を λ に対する固有ベクトル, \vec{v} を μ に対する固有ベクトルとするとき, \vec{u}, \vec{v} が 1 次独立であることを示せ。