ベクトルの内積,正規直交系 演習問題3

 \mathbb{R}^n に内積 (\cdot,\cdot) が与えられているとする.

• $a_1, a_2, \cdots, a_r \in \mathbb{R}^n$ に対して、これらの中の相異なるどの 2 つのベクトルも互いに直交する、すなわち

$$i \neq j \quad \Rightarrow \quad (\boldsymbol{a}_i, \boldsymbol{a}_j) = 0$$

が成り立つとき、 $\{a_1,a_2,\cdots,a_r\}$ は**直交系**であるという。また、ノルムが1 のベクトルからなる直交系、すなわちすべてのi ($1 \le i \le r$) に対して $\|a_i\| = 1$ となる直交系を**正規直交系**という。

- **問 1.** $\{a_1, a_2\}$ は 1 次独立であるとする. 以下の問に答えよ.
 - (i) $a_1 \neq o$ かつ $a_2 \neq o$ を示せ.

(ii)

$$\boldsymbol{b}_1 = \boldsymbol{a}_1, \quad \boldsymbol{b}_2 = \boldsymbol{a}_2 - k_1 \boldsymbol{b}_1$$

 $(k_1 \in \mathbb{R})$ とおく. $\boldsymbol{b}_2 \neq \boldsymbol{o}$ であることを示し、さらに $(\boldsymbol{b}_1, \boldsymbol{b}_2) = 0$ となるような $k_1 \in \mathbb{R}$ を求めよ.

- (iii) b_1 と b_2 , k_1 はそれぞれ (ii) で定められたベクトルと求めた実数とする. このとき $\langle a_1, a_2 \rangle = \langle b_1, b_2 \rangle$ が成り立つことを示せ.
- **問 2.** $\{a_1, a_2, \dots, a_r\}$ は 1 次独立であるとする. 以下の問に答えよ.
 - (i) すべての $1 \le s \le r$ について, $a_s \ne o$ を示せ.
 - (ii) いま, あるベクトルの組 $\{b_1, b_2, \dots, b_{s-1}\}$ $(3 \le s \le r)$ が存在して
 - $\{b_1, b_2, \cdots, b_{s-1}\}$ は直交系で属すどのベクトルも零ベクトルではない.
 - $\langle \boldsymbol{a}_1, \boldsymbol{a}_2, \cdots, \boldsymbol{a}_{s-1} \rangle = \langle \boldsymbol{b}_1, \boldsymbol{b}_2, \cdots, \boldsymbol{b}_{s-1} \rangle$

をみたすとする. さらに

$$\boldsymbol{b}_s = \boldsymbol{a}_s - \sum_{t=1}^{s-1} k_t \boldsymbol{b}_t$$

とおく、このとき $b_s \neq o$ となることを示せ、さらに $\{b_1, b_2, \cdots, b_s\}$ が直交系となるような k_t $(1 \leq t \leq s-1)$ を求めよ、

(iii) \boldsymbol{b}_s と k_t $(1 \le t \le s-1)$ はそれぞれ (ii) において定められたベクトルと求めた実数とする. $\langle \boldsymbol{a}_1, \boldsymbol{a}_2, \cdots, \boldsymbol{a}_s \rangle = \langle \boldsymbol{b}_1, \boldsymbol{b}_2, \cdots, \boldsymbol{b}_s \rangle$ となることを示せ.