§7 陰関数の定理 演習問題1

◎ 問題の難易度の目安【基礎】★☆☆ 【標準】★★☆ 【発展】★★★

1 (★☆☆)(陰関数の微分計算)

曲線 C: f(x,y)=0 上の点 P の近傍において、次の方程式 f(x,y)=0 は陰関数 $y=\varphi(x)$ を持つことを示し、導関数 $\varphi'(x)$ および P における微分係数 φ' を求めよ:

- (1) $f(x,y) = x^2 2xy^2 + y^4 x + y 2$, P(0,1).
- (2) $f(x,y) = \cos y + 2x \cos(xy) + 2y \cos x \pi$, $P(\pi, 0)$.

| 2 (★☆☆)(1 変数関数の極値判定条件)

関数 f(x) は C^2 級(すなわち第 2 次導関数 f''(x) が存在して連続)であり、 f'(a)=0 をみたしているとする.このとき、以下を示せ.

- (1) f''(a) > 0 ならば f(a) は極小値.
- (2) f''(a) < 0 ならば f(a) は極大値.

|3| (★★☆)(陰関数の極値)

次の方程式で与えられる陰関数 $y = \varphi(x)$ の極値を求めよ.

(1)
$$f(x,y) = x^2 + xy + y^2 - 1 = 0$$

(2)
$$f(x,y) = x^2 - xy - y^2 + 2 = 0$$

4 (★★☆)(陰関数の第2次導関数)

2 変数関数 f(x,y) は C^2 級関数(すなわち 2 階までのすべての偏導関数が存在して連続)で、 f(a,b)=0 かつ $f_y(a,b)\neq 0$ とする.このとき、x=a の近くで定義された 2 回微分可能な陰関数 $y=\varphi(x)$ が存在して、

$$\varphi''(x) = -\frac{f_y^2 f_{xx} - 2f_x f_y f_{xy} + f_x^2 f_{yy}}{f_y^3}$$

が成り立つことを示せ、ここで右辺に現れるすべての偏導関数は $(x, \varphi(x))$ における偏導関数である。