多変数関数の極限と連続性 問題1 解答

[1] (i) $f(x,y) = y/\sqrt{x^2 + y^2}$ とおく. $x \to 0$ のとき, $(x,0) \to (0,0)$ であるが, $f(x,0) = 0 \to 0$ $(x \to 0)$. また, $y \to +0$ のとき $(0,y) \to (0,0)$ であるが,

$$f(0,y) = \frac{y}{\sqrt{y^2}} = \frac{y}{|y|} \to 1 \quad (y \to +0).$$

したがって (x,y) の (0,0) への近づけ方によって f(x,y) は異なる値に近づくので,

$$\lim_{(x,y)\to(0,0)} f(x,y) は存在しない.$$

注意 . $\sqrt{y^2}=|y|$ となることに注意.例えば $\sqrt{2^2}=2,\ \sqrt{(-1)^2}=1=|(-1)|$ である.

(ii) $g(x,y) = xy/\sqrt{x^2 + y^2}$ とおく. $x = r\cos\theta$, $y = r\sin\theta$ とすると $(x,y) \to (0,0)$ のとき $r \to 0$ であって, θ がどんな振る舞いをしても

$$|g(x,y)| = \left| \frac{(r\cos\theta)(r\sin\theta)}{\sqrt{(r\cos\theta)^2 + (r\sin\theta)^2}} \right| = |r\cos\theta\sin\theta| \le r \to 0 \quad (r \to 0)$$

だとわかる. したがって $\lim_{(x,y)\to(0,0)}g(x,y)=0$.

- 2 ① ① の結果より, $\lim_{(x,y)\to(0,0)}f(x,y)=0$. 一方,定義より f(0,0)=1. したがって $\lim_{(x,y)\to(0,0)}f(x,y)\neq f(0,0)$ となるから,関数 f(x,y) は (0,0) で連続ではない.
- (i) $f_x(x,y) = \frac{-2x}{(x^2 + y^2)^2}, \qquad f_y(x,y) = \frac{-2y}{(x^2 + y^2)^2}.$

(ii)
$$z_x = ye^{xy}\cos x + e^{xy}(-\sin x) = e^{xy}(y\cos x - \sin x),$$

$$z_y = xe^{xy}\cos x.$$

復習.

$$(f(x)g(x))' = f'(x)g(x) + f(x)g'(x), (0.1)$$

$$(g(f(x)))' = g'(f(x))f'(x).$$
 (0.2)

例えば上記 2 つだけ覚えておけば、(0.2) において q(x) = 1/x として

$$\left(\frac{1}{f(x)}\right)' = \frac{-f'(x)}{f(x)^2}$$

が得られる. さらに $f(x)/g(x) = f(x) \cdot (1/g(x))$ だと思って

$$\left(\frac{f(x)}{g(x)}\right)' = f'(x)\left(\frac{1}{g(x)}\right) + f(x)\left(\frac{1}{g(x)}\right)' = \frac{f'(x)g(x) - f(x)g'(x)}{g(x)^2}$$

が得られる.