初等関数

1 三角関数の加法公式

$$\sin(\alpha + \beta) = \sin \alpha \cos \beta + \cos \alpha \sin \beta$$
$$\cos(\alpha + \beta) = \cos \alpha \cos \beta - \sin \alpha \sin \beta$$

を用いて以下の問に答えよ。

(1) 次の2つの公式を導け。

$$\sin^2 \theta = \frac{1 - \cos 2\theta}{2}, \cos^2 \theta = \frac{1 + \cos 2\theta}{2}$$

- (2) $\tan(\alpha + \beta)$ を $\tan \alpha$ と $\tan \beta$ を用いて表せ。
- $(3) \sin A + \sin B$ および $\cos A + \cos B$ を、 $\sin \cos \theta$ たして表せ。
- (4) $\sin A \sin B$, $\sin A \cos B$ および $\cos A \cos B$ を \sin , \cos の和として表せ。
- (5) $\frac{\sin 2\theta}{\sin \theta}$, $\frac{\sin 3\theta}{\sin \theta}$, $\frac{\sin 4\theta}{\sin \theta}$ を $\cos \theta$ を用いて表せ。
- (6) $\cos 2\theta$, $\cos 3\theta$, $\cos 4\theta$ を $\cos \theta$ を用いて表せ。

2

(1) a, b, c > 0 に対して

$$\log_a b = \log_a c \cdot \log_c b$$

が成り立つことを示せ。

(2) $\log x$ が e^x の逆関数であることを用いて、指数関数の加法公式 $e^{x+y}=e^xe^y$ から

$$\log(xy) = \log x + \log y$$

を導け。

(3) $\log x$ が e^x の逆関数であることを用いて、指数関数の性質 $(e^x)^y = e^{xy}$ から

$$\log x^a = a \log x$$

を導け。

- │3│ 逆三角関数を用いて表せ。
 - (1) 勾配 3% を与える角度 (つまり 100m 進むと 3m 上がる坂の角度)
 - (2) xy 平面でx 軸と直線y = 5x のなす角

- (3) AB = 5, BC = 7, CA = 4 の三角形 ABC における ∠B
- (4) 縦5, 横17の長方形の2本の対角線のなす角(鋭角の方)
- (5) 2つの平面ベクトル (3,1), (2,9) のなす角
- (6) 2つの空間ベクトル (4,1,7),(2,-3,5) のなす角
- 4 次の逆三角関数の値を求めよ。
- $(1) \tan^{-1} 1$
- $(2) \cos^{-1} 0$
- (3) $\sin^{-1}\frac{1}{2}$
- (4) $\tan^{-1}(-\sqrt{3})$
- $(5) \cos^{-1}(-1)$
- $(6) \sin^{-1}\left(-\frac{1}{\sqrt{2}}\right)$
- 5
- (1) $\sin^{-1} x + \cos^{-1} = \frac{\pi}{2}$ を示せ。
- (2) $\cos(2\cos^{-1}x)$ をxの多項式で表せ。
- $(3) \cos(3\cos^{-1}x)$ をxの多項式で表せ。
- (4) $\cos(4\cos^{-1}x)$ をxの多項式で表せ。
- (5) $\cos(\sin^{-1} x) = \sqrt{1 x^2} \, を示せ。$